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R
ABSTRACT i (b

A new class of problems has been analyzed to estimate an
optimal structure of laminated targets, fabricated from the speci-
fied finite set of homcgeneous materials. An approximate descri§-
tion of perforation process 1S based on the model of radial hole
oxtension. The problem.is solved b{ using the needle-type variati-
on technique. The desired optimization conditions and quantita-
tivesqualitative estimations of optimal targets have been obtained
and discussed using specific examples.

INTRODUCT ION

The problem of optimizing strength pro¥erties of inhomogene-
ous targets under impact of tagered conical indenter was first
considered in the study (11. The qualitative criteria of optimal
target structure, deve oped in this and the following studies (for
example [21), were based on Pontryagin maximum rinciple [31. In
the previous research an assum {ion was made about existence of
analytical relation between material hardness and density - a
class of so called control functions.

In the present investigation the range of control functions
belongs to some finite discrete set. This suggests using technique
of needle variations [4] when estimating the necessarK optimiza-
fion conditions and constructing com utational algorithm.

An approximate analysis of penetration 1s based on the model
of radial hole extension [8].

ANALYSTIS

1. Penetration model.

The model of radial hole extension is based on the assumption
of radial displacement of material garticles under the glane axi-
aléy—iymmetric deformation, caused by penetration of the tapered
indenter.

According to (5], the pressure acting on the indenter within
the distance ¢ = x-¢ from the front plate surface can be written
as

p = (1/2)pu={car/a§>2 [BC&)—&/CH&) + razr/atz} +
+ C1/2)p0 8Cedrar/de + (1/22a_|1 + ece:)] (1.1)
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Lﬁere r = r(§) is the expression for the generating line of the W
axisymmetric indenter, p is the density, 8(e&) =" In(l+e), & =
E/[U;(1+v)], U is the indenter current Velocity, o 1s the yield

stress, v is Poisson ratio, E is Young’s modulus.
. The equation of motion for the indenter of mass M has the
orm

(1/2IMdCV®D/dx = ~2r [ pCCOrCEICar/ ok dak (1.2
[e]

with the initial condition wu(0) = v, .

2. Optimization problem.

It is convenient to reEresent the penetration process as a
system of differential equations relative to a vector of phase
coordinates y with _u ‘as a_control function

dy/dx = fCy,w, y0O) = v, (2.1
and to define Freshet’s differentiable functionals by
b
F luC.2,b] = [ p(xddx, (2.2)
Q
FoluC.0,b] = y'(bd =0 (2.3

Insertion of additional phase coordinates and use of (1.1)
~and (1.2) reduces (2.1) to

dy' 7dx = -2Cy' y*+ dly3)/(dé+ v*,  dy*/dx = y®- ACx-RO-h,
dy®/dx =y®-B(x-hD+h, dy’/dx =2y’ -C{x-hD+h?, dy® 7dx =4CxD-ACx-RD,
dy®/dx =B(x)-B(x-h),  dy’/dx =y®-C(x-hD‘h, dy®/dx =CCx0-CCx-h),
Vo> = w2, yCO) =0, (i=23,...8), (2. 4)
where d = (tg 072, d = Mdi/m, y'=z®,

ACXD = 0 CUf x<0), pCx) [BCECX)) ~ e(x)/(f+s(x))] CLf X200,

B(x) = 0 (if x<02, o (x) J}+ BCeCx))| CLf X200,
CCx> = 0 Cif x<03, p(xJ BCeCxDD Cif X200,

The size, number and class of materials to be used in the
%arget layers are specified by a distribution of material proper-
ies

ulx? = {u_: xSlx_,x_ 2, s=T,m )}, x=0, x = b,
s S S+1 1 n+1

where n is the number of layers. The value of u; belongs to a
finite set U which corresponds to a given set of materials u ¢ U =
W, .U,...U>. Here u_ is the material in the s*" layer, U is the

material number and ¢ is the material quantity.
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( The stated optimization problem suggests that from all piece]
wise continuous functions u(x) €U and numbers b >0 one should
choose a control {u°(x), b°) which will provide minimum for the
functional (2.2) under the limiting conditions (2.1), (2.3). The
quality criterion may be refered to as a sEecific plate mass (2.2)
subject to u(b) = 0 (under the requirement of arrested indenter).

3. Necessary conditions of optimization.

A discrete character of the control function range doesn’t
allow to generate small variations in the norm léull =max |éu|. The
xS (o, bl
disturbed control may be written in the form

u(x)={z&'o’ §§$'“’§U (3. 1)

where m< [0,b°]) is the set of measure zero.

An equation for the system (2.1) is expressed in terms of
variations and the main terms of functional increments (2.2),
(2.3) are given by - o

§(dy/dx) - 8f/8y 6y = fCy,w - fCy,u®),

6F = [ [pCw - p(ulldx + plu’Cb°216b°, (3.2
m

6F = Sy (b°) + fly(d®),u’16b°
Using the Lagrange identity and desired limiting conditions

for the disturbed trajectory one finds an expression for 6b°

bO

6b° = [1/fl[§(b°),u°]]j' PIFLY, W - FLy,u®dldx (3.3
o]
where the conjugate vector-function_ v_ satisfies
dysdx = - 8f/0y y (3. 4)
Variation of the minimized functional is written as
éFO[u(.),bJ = I [HCY,w,u®) - HCy,p,wldx (3.5

m
In order to make the control function optimal it is necessary
to follow the principle of maximum

HCY,p,u°) = mgﬁ HCY, p, w) (3.8
wE
An expression for H is given as
H = D[wﬂ(x)A(w) + y OOBCw) + wB(xJC(wJ]—p(wJ, me[b®-h,b°1,

H o= {[ws(x)—w2(x+h)h—w5(x+h)]ACw)+ [we(x)—wa(x+h)h-w3(x+h)]B(w). g

+ [wefx)-wa(x+hJ—w7(x+h)h-w4(x+h)h2]} - Cw), mel0,b°-hl, (3.7
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[where D = plu®Cb®21/f [J(5°),u°1, xem. |

4. Geometrical interpretation and gualitative conclusions [(6].
n

(i) Function H can be expressed as H = ; b, (3, e, Cud, p are

continuous functions of x. The function H given in p, is refered to

as a hyperplane of support to a vector-gradient, which defines
direction of increase grad H = {“1'“2""'“n}' From this follows

that H approaches maximum at one of the vertices of convex poly-
hedron Q , which represents a convex shell of the point set
pijs) ,wSQU, s = 1,4 . The remaining materials of the set U can

be excluded from a further discussion.
(ii) The continuity of uiCx) implies that at any vertex of

the polyhedron Q there is a hygercone K the inferior of which may
contain ?rad KH at slight variation in x<€ (x",x" )< [0,b] and allow
to satisty the maximum condition. Thus, the optimal plate structu-
re includes the finite number of layers of finite thickness.

(1i11) Substitutjon of materials is expected to take place at
the contact points x of the hygercone K and one of the polyhedron
edges. It is to be noted here that the immediately adjacent” mate-
ri?li gay be only there which match the adjoining verlices of the
polyhedron.

d (1v) It can be shown that from the entire set of materials
assumed in the vicinity of the rear surface the preference should
be given to material with minimal density.

5. Numerical algorithm.

Numerical procedure requires insertion of some admissible
control function u(x> € U and a small parameter y which describes
the set of measure =zero. Computaticnal algorithm involves the
uniform mesh xihaving the mesh spacing y. The values of y and vy

are calculated at points X * x’€ and assumed constant for the

segment [xs,xs+1].

Sclution includes the following steps: _

(1) The system (2.4) is integrated and y(x) and b are defined
at mesh nodes.

(1i) Boundary conditions for conjugate functions are prescri-
bed at the point x = b and the system (3.4) is solved.

(1ii1) A new value of u_ on the segment m_ is derived from

condition HC.,.,u*> = max HC.,.,w); if u* = uCx+ /2> this step
s wel s s

1s repeated for s = s+f; otherwise, a new control function is

assumed u” = U CLf xem D, ulxd Cif xems) and calculation returns

] |
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rto steﬁ (1. 7

- The procedure of improving control function proceeds like

this up to the terminal point on the right of the interval. The
process is completed as soon as u(x) remains constant at any s.

RESULTS

A set of materials contain annealed aluminum (a), aluminum
alloy B-95 (b), annealed titanium (c¢), titanium alloy BT-6
(d), steel Cr.6 (e), steel 12X2H4A (f). Material properties are
given in Table 1.

Table 1.
Material | Density Young’s Yield Poisson
p, gssm*| modulus E, GPa | stress @ ., GPa| ratio, v

a 2.8 70 0.086 0.33

b 2.8 70 0. 45 0.32

c 4.5 110 0.08 0.30

d 4.5 120 0.83 0.32

e 7.8 200 0.21 0.28

f 7.8 200 0.11 0.30

For the case of dynamic penetration of tapered cylinder the
optimal plate will consist of two materials (d)+(b). The relative
front layer thickness of the optimal plate increases with the
increase in a half-angle of the cylinder opening a« and initial
impact velocity wv_ .

Fig. 1 shows the decreased mass optimally FO of homogeneous

plates made uB of (b), (d) and (f) -materials as compared to the
optimal one. Disadvantage of heavy materials (d) and (f) decreases
with the increase of v, , since their fraction in the optimal plate

is growing high. At v <600 m/s the preference is given to a homo-
geneous material (b) rather then (d), while at u°>600 m/s the

prefered material is of d- type.

The results of present 1nvestigation agree qualitatively and

?uantitatively with data reported in [2]. If instead of material

f) one uses steel with the yield stress 1.5 GPa an optimal Elate
will consist of three layers. In case of a large choice of materi-
als an optimal target structure will be multilayer. However, the
main qualitative characteristic - a decrease of density and hard-
ness with a distance from the upper to lower surfaces of the
target - remains uncharged.

It is to be noted here, that the usefulness of a soft rear
layer in a target has been already justified but only in context
of fracture behavior of material. From mechanical point of view
the optimality of target structure predicted in [2) and in present
investigation implies its high resistance to penetration while
preserving the same ductile type of cratering.

]



494 _ .
Third International Conference on Inverse Design Concepts and Opumization in Engineering Sciences

ACIDES-IID, Editor; G.S. Dulikravich, Washington D .C. October 23.25, 1991

r REFERENCES

1. Aptukov,V.N. (1981) "Interaction between indenter and target as
a game §ituatioh“, Proc.V Congr.Theor. Appl. Mech., Alma-Ata, 29 (in
russian).

c. Aptukov,V.N.  (1991) "Optimal Interaction of Indenter With
Inhomogeneous Plate" C?aper in this book).

3. Pon r%agin,L.L., Boltyanski,V.G. (1989) Mathematical Theory for
Optimal Processes, Nauka, Moscow (in russian).

4. Fedorenko,R.P. (1978) A4pproximate Solution of Optimal Control
Problems, Nauka, Moscow, (in russian).

5. Sagomonyan,A.J. (1974) Penetration, MGU, Moscow, (in russian).
6. Aplukov,V.N., Belousov,V.L. and Kanibolotski,M. A. (1986) "Opti-
mization of the multilayer ﬁéate structure under penetration = of
rigid indenter", Mech.Comp.Mater., 2, 252-257 (in russian).

Fo,
Yo
f
40¢F
20 F
b
o 1 ~i A 1
Fig. 1.



